Exponents

Common Mistakes
Exponents – Zero and First Power

How to use the Zero and First Power

- **Zero Exponent Rule**
 \[x^0 = 1 \]

 Examples

 \[4^0 = 1 \]

 \[(-3)^0 = 1 \]

- **First Power**
 \[x^1 = x \]

 Examples

 \[5^1 = 5 \]

 \[(-2)^1 = -2 \]

Common Mistakes

- **Zero Exponent Rule**

 - Writing the answer as the original problem.
 - Incorrect: \[4^0 = 4 \]
 - Correct: \[4^0 = 1 \]

- **First Power**

 - Writing 1 as the answer.
 - Incorrect: \[4^1 = 1 \]
 - Correct: \[4^1 = 4 \]
Exponents – Product Rule

How to use the Product & Quotient Rule

- **Product Rule**

 \[x^n \cdot x^m = x^{n+m} \]

 Examples

 \[x^3 \cdot x^5 = x^{3+5} = x^8 \]

 \[3^2 \cdot 3^1 = 3^{2+1} = 3^3 = 27 \]

- **Quotient Rule**

 \[\frac{x^n}{x^m} = x^{n-m} \]

 Examples

 \[\frac{x^5}{x^3} = x^{5-3} = x^2 \]

 \[\frac{4^3}{4^2} = 4^{3-2} = 4^1 = 4 \]

Common Mistakes

- **Product Rule**

 - **Multiplying the exponents**

 Incorrect: \(x^3 \cdot x^6 = x^{3+6} = x^{18} \)

 Correct: \(x^3 \cdot x^6 = x^{3+6} = x^9 \)

- **Quotient Rule**

 - **Dividing the exponents**

 Incorrect: \(\frac{4x^6}{2x^2} = 2x^3 \)

 Correct: \(\frac{4x^6}{2x^2} = 2x^4 \)
Exponents – Power Rule

How to use the power rule

- **Power Rule - Product**
 \[(a^m b^n)^n = a^{mn} b^{mn}\]
 - Ex.
 \[(2x^3)^3 = 2^{1\cdot3} \cdot x^{3\cdot3} = 8x^9\]

- **Power Rule - Quotient**
 \[\left(\frac{a^m}{b^n}\right)^n = \frac{a^{mn}}{b^{mn}}\]
 - \[\left(\frac{3^2}{x^5}\right)^3 = \frac{3^{2\cdot3}}{x^{5\cdot3}} = \frac{3^6}{x^{15}} = \frac{729}{x^{15}}\]

Common Mistakes

- **Applying the power rule incorrectly to coefficients** (the numbers in front of the variables).
 - Hint: You never multiply an exponent by a coefficient. Exponents can only add, subtract, multiply, and divide by other exponents.
 - **Incorrect:** \[(2x^3)^3 = 2 \cdot 3 \cdot x^{3\cdot3} = 6x^9\]
 - **Correct:** \[(2x^3)^3 = 2^{1\cdot3} \cdot x^{3\cdot3} = 8x^9\]

- **Adding the exponents instead of multiplying them.**
 - **Incorrect:** \[(2x^3)^3 = 2^{1+3} \cdot x^{3+3} = 8^4 \cdot x^6 = 16x^6\]
 - **Correct:** \[(2x^3)^3 = 2 \cdot 3 \cdot x^{3\cdot3} = 6x^9\]
Exponents – Negative Exponents

How to use the negative exponent rule

- **Negative Exponent Rule(s)**

 \[a^{-m} = \frac{1}{a^m} \]

 Hint: Move the number/variable to the opposite place to remove the exponent.
 - If the no. with the negative exponent is in the top, move it to the bottom to get rid of the negative on the exponent.
 - If the no. with the negative exponent is in the bottom, move it to the top to get rid of the negative on the exponent.

 \[\left(\frac{a}{b} \right)^{-m} = \left(\frac{b}{a} \right)^m \]

 Hint: If there is a fraction that has a negative exponent, flip the entire fraction. This removes the negative sign from the exponent.

- **Common Mistakes**

 - Applying the negative exponent rule to everything in the problem, instead of just the variable that has the negative exponent.
 - **Incorrect:** \(2x^{-3} = \frac{1}{2x^3} \)
 - The 2 has an exponent of 1, not -3. The negative exponent rule does not apply to the 2.
 - **Correct:** \(2x^{-3} = \frac{2}{x^3} \)

 - When flipping the fraction, getting rid of all the negative exponents, not just the negative exponent on the outside of the parenthesis.
 - **Incorrect:** \(\left(\frac{2y^{-4}}{x} \right)^{-3} = \left(\frac{x}{2y^4} \right)^3 = \frac{x^3}{2^3 y^{12}} = \frac{x^3}{8y^{12}} \)
 - Moving the “y” to the bottom when you are fixing the negative on the 3 does not remove the negative. It must be fixed in a different operation
 - **Correct:** \(\left(\frac{2y^{-4}}{x} \right)^{-3} = \left(\frac{x}{2y^{-4}} \right)^3 = \frac{x^3}{2^3 y^{-12}} = \frac{x^3 y^{12}}{8} \)
Exponents - Combination

How to work with multiple Exponent Rules

- You can apply any exponent rule in any order as long as it does not break the Order of Operation.

 Ex. \(\left(\frac{3x^6}{x^4y^8} \right)^2 \)

 In this problem you need to use the Power Rule, and the Quotient Rule. It does not matter which you use first.

\[
\left(\frac{3x^6}{x^4y^8} \right)^2 = \left(\frac{3x^2}{y^8} \right)^2 = \frac{3^2x^{22}}{y^{82}} = \frac{9x^4}{y^{16}}
\]

- Ex. \(2x^2(3x^3)^2 \)

 In this example, you must apply the power rule before you use the product rule, otherwise you break the Order of Operation that states, powers before multiplication.

\[
2x^2(3x^3)^2 = 2x^2 \cdot 9x^6 = 18x^{2+6} = 18x^8
\]

Common Mistakes

- Not memorizing the rules.
 - Hint: here are some sayings to help
 - When you multiply you add exponents.
 - When you divide you subtract exponents
 - When you use the power rule you multiply exponents
 - When you have a negative exponent, fix it first.

- Applying the rules so that it breaks the Order of Operation, PEMDAS.

- Getting confused as to which rule needs to be applied.

Complete Exponent Manual H:\ACAM 0-40\Exponents Review.docx
To View right click to open the hyperlink.