Finding the Equation of a Circle

By definition, a circle is the set of all points \(P(x, y) \) whose distance from a center \(C(h, k) \) is the distance \(r \). Thus \(P \) is considered a point on the circle if and only if the distance from \(P \) to \(C \) equals \(r \). The general equation of a circle is

\[r^2 = (x - h)^2 + (y - k)^2 \]

where \(r \) is the radius and the point \((h, k)\) is the center of the circle.

Example 1: Find the equation of a circle with radius=3 and a center \((2, -5) \).

Step 1 Begin with the general equation of a circle:

\[r^2 = (x - h)^2 + (y - k)^2 \]

Step 2 Plug in the values in place of their corresponding variables:

From the above example, \(r = 3, h = 2 \) and \(k = -5 \).

Therefore:

\[(3)^2 = (x - (2))^2 + (y - (-5))^2\]

Step 3 Simplify the equation:

Simplify \((3)^2 = (x - (2))^2 + (y - (-5))^2 \) \(\ldots \) to get \(9 = (x - 2)^2 + (y + 5)^2 \)

Example 2: Find the equation of a circle that has points \(P(1, 8) \) and \(Q(5, -6) \) as the endpoints of a diameter.

Step 1 Use the midpoint formula,

\[m = \frac{(x_1 + x_2)}{2}, \frac{(y_1 + y_2)}{2} \], to find the center of the circle:

a. Plug values into midpoint formula \(m = \frac{(1 + 5)}{2}, \frac{(8 + (-6))}{2} \)

b. Simplify \(m = \frac{6}{2}, \frac{2}{2} \) \(\ldots \) to get \(m = (3,1) \)

The center between \(P \) and \(Q \) is \(x = 3 \) and \(y = 1 \), which is also the center coordinates, \((h, k)\), of the circle.

Step 2 Use the general equation of a circle, one of the points given and the coordinates for the center to find the value of \(r \):

a. General equation of a circle is \(r = \sqrt{(x - h)^2 + (y - k)^2} \)

b. Plug in values \(P(1, 8) \) and \(C(3, 1) \) \(\Rightarrow r = \sqrt{(1-3)^2 + (8-1)^2} \)

c. Simplify \(r = \sqrt{(-2)^2 + (7)^2} \) \(\Rightarrow r = \sqrt{4 + 49} \) \(\Rightarrow r = \sqrt{53} \)

Thus, the radius of the circle is \(\sqrt{53} \).

Step 3 Plug in values into the general equation of a circle:

a. General equation of a circle is \(r^2 = (x - h)^2 + (y - k)^2 \)

b. Plug in values \(\Rightarrow (\sqrt{53})^2 = (x - 3)^2 + (y - 1)^2 \)

c. Simplify to get \(53 = (x - 3)^2 + (y - 1)^2 \)
Example 3 Find the radius and center of a circle with equation \(x^2 + y^2 + 2x - 6y + 7 = 0 \).

Step 1 Group all x-terms and y-terms together, and move all constants to right-hand side of the equal sign:

a. The original equation is \(x^2 + y^2 + 2x - 6y + 7 = 0 \).
b. Group all x-terms and y-terms together \(\Rightarrow (x^2 + 2x) + (y^2 - 6y) + 7 = 0 \)
c. Move all constants to right-hand side of the equal sign \(\Rightarrow (x^2 + 2x) + (y^2 - 6y) = -7 \)

Step 2 Complete the square for each group by adding the square of half the coefficient of the x and y variable to each respective group and adding the same amount to the right-hand side of the equal sign:

a. The coefficient of \(x = 2 \) and of \(y = -6 \) \(\Rightarrow (x^2 + 2x + \left(\frac{2}{2}\right)^2) + (y^2 - 6y + \left(\frac{-6}{2}\right)^2) = -7 + \left(\frac{2}{2}\right)^2 + \left(\frac{-6}{2}\right)^2 \)

b. Simplify \(\Rightarrow (x^2 + 2x + 1) + (y^2 - 6y + 9) = -7 + 1 + 9 \Rightarrow (x^2 + 2x + 1) + (y^2 - 6y + 9) = 3 \)

c. Factor the resulting perfect square trinomials and write them as squares of a binomial \(\Rightarrow (x + 1)^2 + (y - 3)^2 = 3 \)

Step 3 Use the resulting equation to obtain the radius and coordinates for the center:

From the equation, \((x + 1)^2 + (y - 3)^2 = 3 \), the center is \((-1, 3)\), and the radius is \(\sqrt{3} \).

Practice Exercises

Find the equation of a circle.

1. Center \((-1, -4)\); radius 8
2. Endpoints of a diameter are \(P (-1, 3)\) and \(Q (7, -5)\)

Given the equation of a circle, find the center and radius for each.

3. \(x^2 + y^2 - 2x - 2y = 2 \)
4. \(x^2 + y^2 + 6y + 2 = 0 \)

Answers:
1. \((x + 1)^2 + (y + 4)^2 = 64 \) 2. \((x - 3)^2 + (y + 1)^2 = 32 \) 3. Center \((1, 1)\); radius 2 4. Center \((0, -3)\); radius \(\sqrt{7} \)